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Streszczenie  

 

W pracy rozwinięto zaawansowane podejście do problemów proekologicznego sterowania ruchem 

drogowym w miastach. Hydrodynamiczny model sterowania obejmuje wielopasmowy, 

jednowymiarowy, dwukierunkowy, ruch pojazdów wielu typów, wiele typów emisyjnych pojazdów, 

wiele typów zanieczyszczeń powietrza.  Sformułowano optymalne, w sensie globalnego czasu podróży, 

globalnych emisji i koncentracji zanieczyszczeń, problemy proekologicznego sterowania w kanionie 

odosobnionym i w trzech sąsiednich kanionach zastępczych, które są reprezentatywne dla podsieci 

miejskiej, oraz wyciągnięto generalne wnioski co do sterowania ruchem drogowym.  

 

 

 

 1 



Streszczenie 

  

Advanced Optimal Traffic Control in Street Canyons  

 

 

 Maciej M. Duras *, ** 

 

**Institute of Automatics, University of Mining and Metallurgy, Aleje Mickiewicza 30, 30-059 Cracow, Poland. 

 

*Institute of Physics, Cracow University of Technology, Podchorążych 1, 30-084 Cracow, Poland. 

 

 

Abstract 

 

In this paper an advanced approach to the proecological urban traffic control problems is developed. 

Hydrodynamical control model of the street canyon includes multilane, one-dimensional bi-directional 

movement of vehicles of several types, of several emission types, and of emitted pollutants. The optimal 

in the sense of total travel time, of pollutants’ emissions, and of pollutants’ concentrations, proecological 

control problems for an isolated street canyon, and for three adjacent substitute street canyons 

representative for the city subnetwork are formulated and the general management illations are deduced. 
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1. Introduction. 

 

1. 1. Importance of problems that are dealt with in article. 

 

The aim of article is minimization of road traffic influences on urban environment inhabited by humans. Such approach 

is natural and it is based on hydrodynamical field model [1-3]. Standard models are too general to be used in 

investigations of street canyons, albeit some of them might have been formally applied for street traffic control through 

introduction of meteorological parameters and of turbulence parameters, that artificially mimic street canyon’s effects. 

Hereafter, we present weaknesses of these models. Standard queueing, emission, vehicular, and dispersion models: 

HIGHWAY-2, CALINE-3, CALINE-4, JEA and TOKYO, PREDCO, SATURN, APRAC, GZE, and PWILG, OMG, 

UTC-1, NETSIM, ROM, RADM, UAM, CIT, are based on simplifying assumptions [1]. Queueing models mainly 

disaggregate vehicular movement in four phases: cruising, deceleration, queueing, and acceleration. Automobile 

Exhaust Emission Modal Analysis Model (EMAM), Positive Kinetic Energy and Power Demand models assume 

instant vehicular velocities and accelerations in polynomial form. Traffic model of P. G. Michalopoulos, D. E. Beskos, 

and J. -K. Lin [4] is continuous field model. In emission models, one assumes linear emission models with constant rate 

of emission throughout entire road HIGHWAY-2, CALINE-3, CALINE-4, MOBILE-2, or throughout road link 

PREDCO [1]. Dispersion models are mainly Lagrangean probabilistic models based on assumption of existence of 

mobile particles (not molecules). Lagrangean models are predominantly Gaussian dispersion models, wherein 

assumption of concentrations in Gaussian form is made ad hoc. Dependence of pollutants’ concentrations on wind’s 

velocity is unilateral: concentrations depend on given wind’s velocity, however wind’s velocity is independent input 

variable. In reality, both concentrations and wind’s velocity depend on each other, as well as they depend on 

temperature, pressure, and vice versa. The abovementioned models are static, not spatially distributed, simplistic, and 

assumed  ad hoc. Moreover, they are not applicable for street canyons, where meteorological data (wind’s velocity, 

temperature, pressure, density of mixture, and concentrations of constituents of mixture), as well as geometrical 

assumptions and their consequences (pollutants adhere on street canyon’s walls, wind’s velocity vanishes on walls) are 

important. However, there exist some models that might have been used in street canyon’s modelling: SATURN, 

APRAC, GZE, PWILG, and OMG [1]. 

 

1. 2. Aim of article. 

 

Aims of article are formulation and solution of proecological optimal street canyon control in street canyons by 

application of an advanced hydrodynamical model. 

 

Mathematical model is built on hydrodynamical theory used for many types of air pollutants, and for many types of 

vehicles as well as for vehicular emissions. In model vehicles are treated as continuous one-dimensional fluids without 

inner structure situated on multilane bi-directional road, hence vehicular dynamics is represented by vehicular 

densities’ fields, vehicular velocities’ fields, and pollutants’ emissions’ fields. Equations of vehicular dynamics are 

balances of vehicular numbers and equations of state of vehicles [4-5]. Vehicular behaviour on signalized street 

junctions depends on signals’ parameters and on existence of vehicular queues. Gaseous mixture is represented by 
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density of mass’ field, pressure’s field, velocity’s field, temperature’s field, and mixture’s constituents’ concentrations’ 

fields. Dynamics of mixture is derived from laws of balances of mixture’s mass, of mixture’s momentum, of mixture’s 

energy, of masses of mixture’s constituents, and of equations of states of mixture and of mixture’s constituents [6-15].  

 

1. 3. Main points of article. 

 

Vehicular movement is modelled as multilane bi-directional onelevel one-dimensional rectilinear. It is considered 

together with two-road traffic signalized junctions [4-5].  

 

Gaseous mixture is composed of viscid Newtonian compressible noninteracting perfect (ideal) gases [6-15]. 

 

Model of dynamics is set of mutually interconnected nonlinear vector temporally dependent partial differential 

equations with nonvanishing right-hand terms (sources) together with boundary-initial problem [4-15]. 

 

Street canyon is dynamical spatially distributed control plant. 

 

Control problems: vector of control is 5-tuple composed of two cycle’s times, of two green’s times, and of offset’s 

time (time shift between starts of signalizations’ cycles on two traffic junctions). The admissible set of control is 

defined.  Six control functionals are introduced: total travel time, global pollutants’ emissions, and global pollutants’ 

concentrations for both single canyon and for three adjacent substitute street canyons of urban subnetwork. Six separate 

monocriterial optimal control problems are formulated. 

 

Results: Six separate monocriterial optimization problems are solved. Analysis and verification of results are 

performed. Moreover, conclusions are deduced on basis of different classes of hydrodynamical and vehicular 

parameters’ scenarios.  

 

2. Hydrodynamical model. 

 

2. 1. Street canyon is represented by the cuboid Ω=[0, a]×[0, b]×[0, c]. We set Cartesian coordinate system x, y, z, at 

street canyon’s corner. Walls are described by y=0, y=b, and road surface by z=0. Remaining three canyon’s walls x=0, 

x=a, z=c, are composed of solely air. Walls do not have holes and vegetation throughout street is absent. Rectilinear 

parallel road lanes are situated on bottom of canyon. At entrance and exit of canyon there are two coordinated 

signalized junctions. 

 

2. 2. Vehicles of VT emission types are modelled as fluids. Traffic movement is bi-directional. 

 

2. 3. Gaseous mixture: The considered mixture of gases consists of  gases. The first 

 gases are the exhaust gases emitted by vehicle engines during combustion ( CO we 

neglect the presence of ). The remaining  gases are the components of air 

N NE A− + =1 N

3 ,( )N E − =1 CH NOx, ,

SO2 N A = 9

 4 



( we neglect the presence of ). The walls of the canyon and the 

surface of the road are impervious for all gases of the mixture. The remaining three surfaces of the cuboid are pervious 

for external fluxes of exhaust gases and for air components. The internal sources of air components are not present with 

the exception of oxygen, i.e., th component of the gaseous mixture. There are internal mobile sources of exhaust 

gases (passenger cars, and trucks, with many types of engines: diesel or petrol, and with mixed ages of engines). 

During the combustion the vehicular engine consumes oxygen, therefore with each internal mobile source of exhaust 

gases a negative source of oxygen (sink) is connected. The gaseous mixture is treated as compressible, Newtonian, and 

viscous fluid. We assume that also the components of the mixture are compressible, Newtonian, viscous, noninteracting 

fluids (perfect gases). The i th component possesses individual velocity v x , density , and 

pressure , whereas the mixture possesses total velocity v x , density , pressure 

, and temperatureT . 
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2. 4. Equations of dynamics: Balances of total momentum of mixture, of total mass of mixture, of masses of 

components of mixture, of energy of mixture, and equation of state of mixture (averaged over constituents), as well as 

balances of numbers of vehicles and equations of states of vehicles [4-15].    

 

2. 5. Model variables: Mixture’s temperature T , mixture’s total velocity v x , mixture’s total 

density , mass concentration of i th constituent of mixture c , mixture’s total pressure 

. 

),,,( tzyx ( ,

)

 

2. 6. State variables: Vehicular densities  vehicular velocities  pollutants’ emissivities 

 where for  left lanes and is left lane’s number, l whereas for  right 

lanes and is right lane’s number, l is vehicular type’s number, is emitted 

pollutant’s number, ct  VT is number of vehicular types, CT is number of types of emitted pollutants. We 

shall adopt above notation throughout entire article.

),,(, txk s
vtl

1 l

,,...,1 Rn vt

),

vt

=

= =

 

 

2. 7. Vector of control: u , , vectors of control on j th junction, where 

 are green’s times, C C  are cycle’s times, and is offset’s time 

between beginnings of cycles on two junctions. Vector of control:  

) 2,,...,1 == MMj

Cj j j∈[ ,,min ,max

                                                                                                                                                 (1) 

 

The admissible control domain set for this 5-tuple in the simulation time period T  is for  

[[],, min,max,min jjj ggC ∈∈    (2) 
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where δ  is discretization step in direction of control space. F F

 

2.  8.  Boundary conditions: We assume von Neumann’s boundary conditions on canyon’s walls and on road’s surface 

(normal derivatives of functions are given), whereas we assume Dirichlet’s boundary conditions on remaining three 

walls (functions are given). Boundary conditions follow from viscosity of gaseous mixture, since velocity of fluid 

vanishes on non-moving impervious surface. 

  

2. 9. Initial conditions: We assume initial conditions with accordance with boundary conditions. 

 

2. 10. Sources (emission processes): 

 

2. 10. 1. Heat’s source:  the rate of change of the volume density of internal sources of energy 

connected with the production of heat by vehicular engines. We assume that the sources of energy are situated in  

left or right lanes at  at the level of the road : 

σ( , , ,),x y zt
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⋅= χσσ                                      (3)  

whereσ  are the rates of change of linear density of energy connected to heat produced by engines of 

vehicles of type vt on l th left or right lane, respectively. 

),,(, txs
vtl

 

},,)0,,(:)0,,{( s
l

s
l yyyxyxD =Ω∈=  

are vehicular lanes, and  

,1),,( =zyxDχ for (   for  ,),, Dzyx ∈ ,0),,( =zyxDχ ,),,( Dzyx ∉

is characteristic function of set  .D
 
2. 10. 2.  Pollutants’ masses’ sources:  the rate of change of the volume density of internal sources 

(the emission rate) of  th component of exhaust gases emitted by all vehicles in the canyon. We assume that the 

sources of exhaust gases are situated in  left or right lanes at  at the level of the road : 
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ct
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Set x y z tN E
( , , , ),  the volume density of negative internal sources (the emission rate) of oxygen absorbed by all 

vehicles in the canyon.  We assume that:  

Set x y z t ONOX Set x y z tN NE E
( , , , ) ( , , , ),= ⋅ −1  where ONOX . = −05308.

 

2. 10. 3. Mixture’s mass’ source:  the rate of change of the volume density of internal sources of 

gaseous mixture consisting of exhaust gases and of oxygen.  

),,,,( tzyxS
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The following relation holds:                                 (5) S x y z t Set x y z tne
ne

N E

( , , , ) ( , , , ).=
=
∑

1

 

2. 11. Set of equations of dynamics of air mixture and of vehicles [4-16]. 

 

2. 11. 1. Balance of momentum of mixture - Navier Stokes equation. 

ρ
∂
∂
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η( ( ) ) ( ) ( )

r
r r r r
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t
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,                                                                             (6) 

where  is first viscosity coefficient (η η =  for air at temperature ),  is 

second viscosity coefficient (

⋅
⋅

−181 10 6. [ kg
s m

] KT = 293[ ] ξ

][10 6

ms
kg
⋅

−6.15 ⋅=

rg

ξ for air at temperature T , [16]),  is 

gravitational body force density,  is gravitational acceleration of Earth (

]K
r

[16.293=
rF g= ρ

rg m
s

= −( , , . )[0 0 9 81 2 ]).  

 

2. 11. 2. Balance of mass of mixture - Equation of continuity. 

∂ρ
∂

ρ
t

div v S+ ( )r = .                                                                                                                                                        (7) 

 

2. 11. 3. Balances of masses of components of mixture- Diffusion equations.  
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where is the mutual diffusivity coefficient from component i to  and  is the autodiffusivity 

coefficient of component  and is the thermodiffusion ratio of component i

D Dim mi= m, Dii

i, kT i, .The diffusivity coefficients and 

thermodiffusion ratios are constant and known [17]. Since the mixture is in motion we cannot neglect the convection 

term: v  We assume that the barodiffusion and gravitodiffusion coefficients are equal to zero. 
r ci∇

 

2. 11. 4. Balance of energy of mixture. 
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whereε  is the mass density of intrinsic energy of the air mixture, Π is the stress tensor, :is contraction operation, and 

is the flux of heat. We assume that [1]:  
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where ε  is the mass density of intrinsic energy of ,,...,1, Nii = ith constituent of air the mixture,  is the chemical 

potential of 

,iµ

ith constituent of air, is the molecular mass of the ,im ith constituent, is the specific heat at constant 

pressure of 

cpi,

ith constituent of air,kB
J

K
= ⋅ −13807 10 23. [ s⋅ ]]is Boltzmann’s constant, h J is 

Planck’s constant,γ is coefficient of thermal conductivity of air, and is the flux of mass of the 

= ⋅62608 −6 10 34. [

r
ji ith constituent. The 

above mentioned magnitudes are derived from Grand Canonical Ensemble with external gravitational field [1]. 

 

2. 11. 5. Equations of state - Constitutive equations-Clapeyron’s equation and Dalton’s law. 
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where R
J

mole K
=

⋅
83145. [ ] kg] is gas constant, is the molecular mass of 

air. 

m u uair = = ⋅ −28966 166054 10 27. ( . [ )
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2. 11. 6. Balances of numbers of vehicles - Equations of continuity [4]. 
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2. 11. 7. Equations of states of vehicles –Greenshields’ equilibrium u-k model [5].  
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where are vehicular free flow speeds, and k are vehicular jam densities [5]. ,,,
s

fvtlw

 

2. 11. 8.  Technical parameters. 

 

The dependence of the emissivity on density and velocity of vehicles is taken in the form: 
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where and v are experimental velocities and e are experimental emis-

sions of th exhaust gas from single vehicle of vt th type at velocity  measured in 

),,(|),(| 1,,,,, +∈
ll ivtctivtct

s
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⋅

[  [18-19]. 

Similarly, the dependence of the change of the linear density of energy on density and velocity of vehicles is taken in 

the form: 
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where are experimental values of consumption of gasoline/diesel for vehicle of vt  th type at velocity  

measured in 

,,, livtlσ ,, livtv

]
veh

kg
⋅

[ , is the emitted combustion energy per unit mass of gasoline/diesel 
s

qvt ]
kg
J[   [18]. 

2. 11. 9. Vector of control. 
admUFCgCgu ∈= ),,,,( 2211 ,                                                                                                                               (18) 

where U  is a set of admissible control variables (compare Eqs (1), (2)). adm

 

2. 12.  Optimization problems.  

Our control task is the minimization of the measures of the total travel time TTT [4], emissions E, and concentrations C 

of exhaust gases in the street canyon, therefore the six separate monocriterial optimization problems are formulated as 

follows: 
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F1. ,                                                                                                                                                       (19) 
admUu∈

min )(uJTTT

where .                                                                                                        (20) ∑∑∑ ∫ ∫
= = =

=
2

1 1 1 0 0
, ),()(

s

n

l

VT

vt

T a
s
vtlTTT

s S

dtdxtxkuJ

F2. ,                                                                                                                                                         (21) 
admUu∈

min J uE ( )

where .                                                                                                   (22) ∑∑∑∑ ∫∫
= = = =

=
2

1 1 1 1 0 0
,, ),()(

s

n

l

CT

ct

VT

vt

T a
s

vtctlE

s S

dtdxtxeuJ

F3.  ,                                                                                                                                                          (23) 
admUu∈

min J uC ( )

where .                                                                                          (24) ∑ ∫ ∫ ∫ ∫
−

=

=
1

1 0 0 0 0

),,,()(
E SN

i

T a b c

iSTPC dtdxdydztzyxcuJ ρ

F4. ,                                                                                                                                                   (25) 
admUu∈

min JTTT ext, ( )u

u

u

where .                                                            (26) ∑ ∑∑
= = =

−+=
2

1 1 1
,,,, )()()()(

s
ss

n

l

VT

vt

s
jamvtl

s
extTTTTTTextTTT gCkauJuJ

s

α

F5. ,                                                                                                                                                      (27) 
admUu∈

min JE ext, ( )

where                                                                        (28) ∑ ∑∑∑
= = = =

−+=
2

1 1 1 1
,,,, ).)(()()(

s

n

l

CT

ct

VT

vt
ss

s
jamvtctlEextE

s

gCeauJuJ

F6.  ,                                                                                                                                                     (29) 
admUu∈

min JC ext, ( )

where .                                                              (30) ∑ ∑
−

= =

−+=
1

1

2

1
,,, ))()(()()(

EN

i s
ss

s
extCSTPiSTPCextC gCcabcuJuJ αρ

Remark: The density of vehicles, the emissions and concentrations in F1, F2, F3, F4, F5, F6, are the solutions of 

equations with given boundary and initial conditions, and the sources.   The functionals in F1, F2, F3, F4, F5, F6, 

depend on the vector of control u  through the conditions given in the next Section 3, Eq. (31). The six separate 

monocriterial optimization problems F1, F2, F3, F4, F5, F6, are considered parallelly.   and  are measured 

in ,  and are measured in [ , and  and  are measured in [ . 

Moreover, , are the jam vehicular emissions, and are the pollutants’ concentrations at standard 

temperature and pressure STP, and is density of air at STP. In the last three optimization problems F4, F5, F6, we 

defined the additional cost functions ascribed to the nearest neighbour previous and next street canyon assuming that in 

these canyons there are full jams. Hence, by these additional terms we modelled the remaining canyons of the city.                               

JTTT JTTT ext,

][ sveh ⋅

s
ctle ,

JE

jamvt ,

extEJ , ]kg CJ
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JC ext, ]skg ⋅

, ci S,
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3.  Numerical examples: domination of passenger cars over trucks. 

 

Now, we will solve numerically six separate monocriterial optimization problems F1-F6. We assumed the data from 

real street canyon Krasiński Avenue in Cracow [20]. We solve the set of equations of dynamics with given boundary 
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and initial conditions, and sources, by finite difference method using the C language programme written by the author. 

We solve this set in the cuboid Ω starting from initial conditions and we iterate it over the time period [ using the 

direct finite difference method taking into account the boundary conditions, and the sources, and initial conditions, at 

each time step. The functionals in F1, F2, F3, F4, F5, F6, are iterated with the same steps that the equations of 

dynamics are iterated. The temporal first derivative is approximated by first differential quotient using forward two-

point first difference in direction of temporal coordinate, whereas the spatial first derivatives are approximated by first 

differential quotients using central three-point first differences in directions of spatial coordinates. In general, the 

numerical results are in very good agreement with measured data from [20]. We use the 

notation: ( , is vector of control for optimal total travel time F1, 

 is vector of control for optimal emissions F2,  is vector of 

control for optimal concentrations F3. ( , is vector of control for optimal 

total travel time F4,  is vector of control for optimal emissions F5, 

 is vector of control for optimal concentrations F6. We assumed the following 

data from real street canyon Al. Krasiński avenue in Cracow [20]: 

],0 ST

, )FC

, , ,C g C g FTTT TTT TTT TTT TTT1 1 2 2

, , , )C g FE E E E E1 1 2 2

TTT

( , ,, ,C gE ext E ext1 1

( , , , , ), , , , ,C g C g FC ext C ext C ext C ext1 1 2 2

)

δ

s

eh m]

( ,C g

C ext

( , , ,C g C gC C C C1 1 2 2

, ), ,FTTT ext, ,, , ,C g C gext TTT ext TTT ext TTT ext1 1 2 2

, , ), , ,C g FE ext E ext E ext2 2

VT n nL R= = =4 2,

],[8.46 m yx =δδ

; ;  

 the discretization steps in directions, 

CT NE= − =1 3

],[00.4 m tz === δ

],[60],[20],[44],[468 sTmcmbma ====

x y z t, , , ,],[8.4],[80.8 sm δ

],[5.7],[5.7],[0.15],[5.7],[0.15
2211

sssss FgCgC ===== δδδδ

C g C g F1 1 2 2, , , , , g s jj j,min ,min min[ ]; [ ], , ;= = =30 10 1 2

C g C g F1 1 2 2, , , , C T g C g jj j j j orth,max ,max ,, ,= = − = 1 2

F g s jj orth, [ ], , ,= =15 1 2

;1;1;1 21
,

2
,

1
, === EextEextTTTextTTT ααα

the discretization steps in 

 directions, C s the minimal values of control 

variables and , the maximal value of 

, are the green’s lights’ lengths on the orthogonal canyons to the one studied. The scaling 

parameters in F1-F6 are set to unity:α . 

F [ ],= 0

Fmax,

;1, =ext α

C F; = −2 δ

11
, =extC 1; 2

, =extCα

According to [4] we assumed the vehicular boundary conditions in such a form: vehicular density is equal to saturation 

or arrival density respectively, if traffic signals are green and there is no queue or there is queue, respectively. If the 

traffic signals are red, then vehicular density is equal to jam density [1].  

The existence of the queues at the entrances to the canyon at  for the left lanes, and at  for the right lanes 

is determined by the values of the vehicular densities changing in the following way: 

x = 0, x a= ,

GREENxvtl ktk =− ),(1
, δ for  t g C C g∈ ∪ + ∪[ , ) [ , ) ...,0 1 1 1 1

REDxvtl ktk =− ),(1
, δ  for  t g C C g C∈ ∪ + ∪[ , ) [ , ) ...,1 1 1 1 12

GREENxvtr ktak =+ ),(2
, δ for  t F F g F C F C g∈ + ∪ + + + ∪[ , ) [ , ) ...,2 2 2 2

REDxvtr ktak =+ ),(2
, δ for                                                                   t F F g F C g∈ ∪ + + + ∪[ , ) [ , ) ...,0 2 2 2

 ,                                                                                                (31) k veh m k vGREEN RED= =0 030 0 006. [ / ], . [ /

where are green’s, or red’s vehicular densities, respectively [1]. ,, REDGREEN kk

 11



From the numerical simulations we deduce that [1]: 

I1. The optimal pollutants’ emissions F2, F5, are the lowest if there are no vehicles on left (leeward) and right 

(windward) lanes; then, they are greater if the vehicles are only on left or right lanes (and they are equal); finally, they 

are the greatest if there are vehicles on both lanes. The optimal pollutants’ concentrations F3, F6, are the lowest if there 

are no vehicles on left (leeward) and right (windward) lanes; then, they are greater if the vehicles are only on left lanes; 

next, they are again greater if there are vehicles on both lanes; finally, they are the greatest if there are vehicles only on 

right lanes. 

 

I2. In the cases F1, F2, F3, if there are no vehicles on left and right lanes, then optimal total travel time F1 and optimal 

pollutants’ emissions F2 are equal to zero, whereas optimal concentrations F3 are not equal to zero, since the pollutants 

are dispersed in the air even in the absence of vehicles (background pollutants’ concentrations). In the F4, F5, F6, cases 

all values are nonzero.  

 

I3. The optimal 5-tuples in the F1, F2, F3, cases are always different (no triple degeneration) with only one exception 

for the absence of vehicles (triple degeneration of 5-tuples). In some cases, there is double degeneration between 5-

tuples for F2 and F3.  

 

I4. For the optimal 5-tuple for total travel time F1,  tend to be minimal (the minimal 

capacity on both left and right lanes), only in the absence of vehicles on both lanes. For the right lanes, the cycle’s time 

is always maximal. For the left lanes, the cycle’s time is always maximal, and green’s time is equal to, or is essentially 

longer, than cycle’s time for right lanes. This is a result of coordination trade-offs between the traffic demands on the 

left and right lanes. 

,,,, 2121 TTTTTTTTTTTT ggCC

 

I5. If the optimal 5-tuples for F2, F3, cases are different from the 5-tuple for total travel time F1, then they are 

asymmetrical: , or , for F2; similarly , or , for F3. The 

optimal offset’s times  are nontrivial parameters.  

)( 21 EE CC ≠

,TTT FF

)( 21 EE gg ≠

,C

)( 21 CC CC ≠ )( 21 CC gg ≠

,E F

 

I6. The optimal 5-tuples in the F4, F5, F6, cases are always different (no triple degeneration) with only one exception 

for the absence of vehicles (triple degeneration of 5-tuples).  In some cases, there is double degeneration between 5-

tuples for F5 and F6.  

 

I7. For the left lanes the cycle’s times and green’s times are equal to, or are essentially longer, than for right lanes for 

F4 with one exception for the absence of vehicles, and the optimal offset’s time is a nontrivial parameter. The green’s 

times for left lanes are always great. This is a result of coordination trade-offs between the traffic demands on the left 

and right lanes. 

 

I8. For F5, F6, the optimal offset’s times are nontrivial parameters. The green’s times and cycle’s times for right lanes 

are sometimes minimal. This is a result of coordination trade-offs between the traffic demands on the left and right 

lanes. 
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I9. If the optimal 5-tuples for F5, F6, cases are different from the 5-tuple of F4, then the optimal offset’s times for F5, 

F6, are nontrivial parameters. 

   

I10. The 5-tuples for F1 and F4 are sometimes identical. 

 

I11. The 5-tuples for F2 and F5, as well as F3 and F6, are nonidentical with exception of absence of vehicles. 

 

I12. The optimal total travel time values for F4 case are always greater than for F1 case. 

 

I13. The optimal emission values for F5 case are always greater than for F2 case. 

 

I14. The optimal pollutants’ concentrations’ values for F6 case are always greater than for F3 case. 

 

I15. The optimal values for F1, F4, cases, for F2, F5, cases, and for F3, F6, cases, decrease with “uniformization” of 

vehicles, when we pass from nonuniform vehicles to uniform ones. It is a result of decrement of the number of vehicles 

moving in the canyon. For uniform vehicles the values of jam, saturation, threshold, green’s, and red’s densities take on 

minima. 

 

I16. The long vehicular queues decrease total travel times F1, F4, and they increase both optimal emissions F2, F5, and 

concentrations of pollutants F3, F6. The decrement of total travel times F1, F4, with long vehicular queues is result of 

clustering of vehicles. 

 

We define ratios of dimensionless the worst solutions of problems F1, F2, F3, F4, F5, and F6, to corresponding 

optimal solutions: respectively. The worst solutions are the antioptimal solutions, e. 

g., instead of minima we take maxima in problems F1, F2, F3, F4, F5, F6. 

,,,,,, ,,2, extCextEextTTTCETTT rrrrrr

 

I16. Generally, we gain a lot in the case of total travel time for single canyon  F1; as well as in pollutants’ 

emissions for both single canyon  F2, and for single canyon with two substitute nearest neighbour canyons  

F5. It is even possible to obtain ratios greater than two. It means; that, if we optimally control street canyon, then, we 

can reduce more than one and half the total travel time, and more than two emissions. We know it, because we 

calculated the worst control scenarios. However, it is not the same for the remaining ratios. The ratios for pollutants’ 

concentrations for single canyon  F3; as well as both ratios for total travel time  F4, and pollutants’ 

concentrations  F6, for single canyon with two substitute nearest neighbour canyons are very close to one. This 

fact means, that we gain almost nothing by optimal control of street canyon, and that the functionals F3, F4, F6, are 

very flat (almost constant) in the range of calculations and of parameters. It could be understood for pollutants’ 

concentration cases F3, F6, since the masses of pollutants and of remaining gases in canyons are huge, and it is not 

TTTr

Er

Cr

extEr ,

2,extTTTr

extCr ,
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possible to remove them from canyon. In the case of total travel time F4, probably, we must take into consideration 

influence of other than two canyons of urban network. 

 

I17. The ratios  F1 for total travel times are not defined if there are no vehicles on left (leeward) and right 

(windward) lanes; then, they are equal for three cases: if the vehicles are only on left lanes, or only right lanes, or on 

both lanes. They increase with increment of queues and they are insensible for  “uniformization” of vehicular 

parameters. Also, the ratios  F2 for pollutants’ emissions are not defined if there are no vehicles on left (leeward) 

and right (windward) lanes; then, they are equal for three cases: if the vehicles are only on left or only right lanes, or on 

both lanes. They increase with increment of queues and they decrease with “uniformization” of vehicular parameters. 

The ratios F3 for pollutants’ concentrations are equal to unity for all cases.  

TTTr

Er

Cr

 

I18. The ratios  F4, for total travel times for canyon with two substitute nearest neighbour canyons are always 

equal to unity. The ratios r  F5, for pollutants’ emissions for canyon with two substitute nearest neighbour canyons 

are the highest if there are no vehicles on left (leeward) and right (windward) lanes; then, they are lower and equal for 

two cases: if the vehicles are only on left or only right lanes; finally, they are the lowest, if there are vehicles on both 

left and right lanes. They decrease both with increment of queues and with  “uniformization” of vehicular parameters. 

They are almost always higher than emission ratios for single canyon  F2. This effect is interesting, because it 

shows a countertendency to emission ratios for single canyon  F2 (see I17) and to optimal emissions F2, F5 

(compare I1). Thus, the six functionals F1, F2, F3, F4, F5, F6, are nontrivially chosen, and they show interesting 

features. Also, the inclusion of substitute canyons shows here its importance, e. g., that  F2 and  F5 contrarily 

feel the influence of surrounding urban network. The ratios  F6 for pollutants’ concentrations for canyon with 

two substitute nearest neighbour canyons are the highest if there are no vehicles on left (leeward) and right (windward) 

lanes; then, they are lower if the vehicles are only on left lanes; next, they are lower, if the vehicles are on both left and 

right lanes; finally, they are the lowest, if the vehicles are only on right lanes. They increase both with increment of 

queues and with  “uniformization” of vehicular parameters with one exception. They are always higher that 

concentration ratios for single canyon  F3. The ratios  F6 are close to unity.   

extTTTr ,

extE ,

Er

Er

ext

Er extEr ,

Cr ,

Cr extCr ,

 

I19. The ratios in the F1, F2, F3, cases are always different (neither double nor triple degeneration) with only one 

exception for the absence of vehicles (where two ratios are not defined).  

 

I20. The ratios in the F4, F5, F6, cases are always different (neither double nor triple degeneration). There is no double 

degeneration between ratios  between r  and between .  ,, ,extTTTTTT rr ,, ,extEE r extCC rr ,,

 

4. Conclusions. 
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The article is concerned with formulation and solution of optimal road traffic control problem with hydrodynamical 

model of the street canyon. The article provided nontrivial dynamical spatially three-dimensional, temporally 

dependent, field model of vehicular movement, of emissions, and of dynamics of pollutants in the street canyons. The 

several control optimization problems were formulated and solved: we calculated minimal total travel time, global 

emissions, and global concentrations of pollutant, in single canyon, and in canyon with two nearest neighbour 

substitute canyons. The numerical examples of different traffic and meteorological scenarios were provided and 

conclusions were inferred. 

 

In general, some vehicular traffic and hydrodynamical parameters influence the solutions of optimization problems F1, 

F2, F3, F4, F5, F6, but not all of them: 

 

R1. The direction of velocity of air mixture is important. The optimal pollutants’ concentrations for both single canyon 

and canyon with its two substitute nearest neighbour canyons, F3, F6, are the lowest if the velocity components of the 

boundary and initial value problems are equal to zero; further, they are the grater if velocity has only nonzero vertical 

component; then, they are greater if velocity has only nonzero x-component; further, they are again greater if velocity 

has two nonzero y- and z-components; next, they are again greater if velocity has three nonzero x-, y-, z-components; 

finally, they are the greatest if the velocity has only nonzero y-component. From numerical simulations, we infer that in 

some case, the optimal green’s time  is different from other cases. It means that velocity of mixture influences 

optimal 5-tuples of control. 

Cg ,2

 

R2. The optimal values for F1, F4, cases, for F2, F5, cases, and for F3, F6, cases, decrease with “uniformization” of 

vehicles, when we pass from nonuniform vehicles to uniform ones. It is a result of decrement of the number of vehicles 

moving in the canyon. For uniform vehicles the values of maximum free flow speed, jam, saturation, threshold, 

green’s, and red’s densities take on minima. 

 

R3. The long vehicular queues decrease total travel times F1, F4, and they increase both optimal emissions F2, F5, and 

concentrations of pollutants F3, F6. The decrement of total travel times F1, F4, with long vehicular queues is result of 

clustering of vehicles. 

 

R4. The constant of temperature scale TH does not differentiate the values of optimal concentrations of pollutants F3, 

F6, in the temperature range near standard temperature and pressure STP conditions. However, it diminishes them even 

hundredfold for very high temperatures. 

 

R5. The functional form of initial and boundary conditions affects the optima. If they are constant then optimal 

concentrations F3, F6, are twice higher than in the case when they are changing exponentially in space in three 

dimensions.  

 

R6. The presence of vehicles on both left and right lanes is important. The optimal total travel times and emissions are 

halved in absence of vehicles only on left or right lanes with respect to situation when they circulate on both left and 

right lanes. 

 15



 

R7. The values of saturation, arrival, or jam vehicular density, and of vehicular free flow velocities also affect the 

optima F1, F2, F3, F4, F5, F6. 

 

R8. The assumption of energy conservation equation, of thermodiffusion effect, of chemical potential and of Grand 

Canonical ensemble, as well as of influence of gravity on intrinsic energy and on chemical potential, drastically 

changes the optimal concentrations F3, F6, towards measured ones [1-3].  

 

R9. The value of time of simulation and of discretization in time affects much the optima. The values of optimal 

solutions F1, F2, F3, F4, F5, F6, increase from tenfold to hundredfold. Also the optimal 5-tuples for F1, F2, F3, F4, 

F5, F6, change their values. It is result of cumulative effect of length of period of simulation T  on integral functionals 

F1, F2, F3, F4, F5, F6.   

S

 

The proecological traffic control problem and advanced model of the street canyon have been developed in the article. 

It was found that the proposed model represents the relevant features of the very complex air pollution phenomena. The 

control model of the street canyon may be in a simple way extended by three-dimensional representations of vehicles, 

multilevel streets and junctions, as well as canyons with nonhomogeneous walls. Furthermore, it can be remodelled to 

artery models or to urban traffic subnetwork models. 
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